Available Tracks:	0	100,000	200,000	300,000	400,00	0 50	0,000	600,00	0	700,000	800,0	000	900,000	1,000,000	1,100,000	1,200,000	1,300,0
				\leftarrow	\rightarrow	Θ	Q	A	4~	69,380.	. 70,69	5	Go				<u>Link</u>
band		138,500	138,750	139,000		139,250		139,500		139,750		140,000		140,250	140,500	140,750	
Natural transposon	Gene Spa	an				~~~		~~~		~~~	~~			****			
Transgene insertion site	mRNA																
Ortholog (FlyBase)																	
cDNA and Aligned genomic sequences							_										
Oligonucleotides																	
protein binding site	Conservation																
enhancer Mutation: point mutation	/'					'	l I		<u>يا د</u>			k	i		. щ. I.	1,1, 4, .	la al
Mutation: sequence	BAM Test																
variant																	
															Ī		
										k							

How JBrowse is different

Most Web-based Genome Browsers

JBrowse moves work:

Server -> client

On the server: Read-time -> write-time

Most Web-based Genome Browsers

BAM example

- On one test data set:
 - 4.4 million features
 - 8 minutes to process
 - From 242 megabyte BAM file
 - Not paired-end
 - Used 400 megabytes of RAM
 - 330 megabytes on disk (without sequence)
 Broken into ~40 kilobyte chunks
 - Compresses down to 80 megabytes

Wiggle tracks: pre-rendered

- Only rendered up to 1 base per pixel
- Implemented in C++
- ~12 min to generate tiles for Dmel conservation track (1 data point per base)
 - => ~1min per 10 million bases
- Wiggle tiles compress well
 - ~5 bytes/base, half of which is filesystem overhead
- They could also be rendered on the fly

Summary: JBrowse...

Allows the client to cache useful amounts of data

Lower server load means:

- The user waits much less
- Cheaper/easier to host a genome browser

Client-side approach

- Richer interaction
 - Smooth, continuous transitions
 - Help the user build an intuitive sense of where things are relative to one another
 - Client-rendered graphics: client can filter, highlight, etc.
- Web Apollo

Why it wasn't done earlier

- Getting the web browser to do the work is nontrivial
 - Some web browsers have mechanisms intended to enable the browser to render graphics (e.g., SVG, canvas)
 - None of those mechanisms work in all browsers (Internet explorer doesn't have SVG or canvas)

HTML element

HTML element

HTML element

GBrowse JBrowse

Older (2002)	Newer (2009)
More functionality	Faster, smoother UI
Does work on server	Moves work to web browser

GBrowse JBrowse

Same underlying perl machinery

Same data sources (GFF, BED, WIG, SAM/BAM...)